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ABSTRACT 50 

 Many stock assessments heavily rely on indices of relative abundance derived from 51 

fisheries-dependent catch-per-unit-effort (CPUE) data. Therefore, it is critical to evaluate 52 

different CPUE standardization methods under varying scenarios of data generating 53 

processes. Here, we evaluated nine CPUE standardization methods offering contrasting 54 

treatments of spatio-temporal variation, ranging from the basic generalized linear model 55 

(GLM) method not integrating a year-area interaction term to a sophisticated method using 56 

the spatio-temporal modeling platform VAST. We compared the performance of these 57 

methods against simulated data constructed to mimic the processes generating fisheries-58 

dependent information for Atlantic blue marlin (Makaira nigricans), a common bycatch 59 

population in pelagic longline fisheries. Data were generated using a longline data simulator 60 

for different population trajectories (increasing, decreasing, and static). These data were 61 

further subsampled to mimic an observer program where trips rather than sets form the 62 

sampling frame, with or without a bias towards trips with low catch rates, which might occur 63 

if the presence of an observer alters fishing behavior to avoid bycatch. The spatio-temporal 64 

modeling platform VAST achieved the best performance in simulation, namely generally had 65 

one of the lowest biases, one of the lowest mean absolute errors (MAEs), and 50% confidence 66 

interval coverage closest to 50%. Generalized additive models accounting for spatial 67 

autocorrelation at a broad spatial scale (one of the lowest MAEs and one of the lowest biases) 68 

and, to a lesser extent, non-spatial delta-lognormal GLMs including a year-area interaction as 69 

a random effect (one of the lowest MAEs and one of the best confidence interval coverages) 70 

also performed adequately. The VAST method provided the most comprehensive and 71 

consistent treatment of spatio-temporal variation, in contrast with methods that simply weight 72 

predictions by large spatial areas, where it is critical, but difficult, to get the a priori spatial 73 

stratification correct before weighting. Next, we applied the CPUE standardization methods to 74 
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real data collected by the National Marine Fisheries Service Pelagic Observer Program. The 75 

indices of relative abundance predicted from real observer data were relatively similar across 76 

CPUE standardization methods for the period 1998-2017 and suggested that the blue marlin 77 

population of the Atlantic declined over the period 1998-2004 and was relatively stable 78 

afterwards. As spatio-temporal variation related to environmental changes or depletion 79 

becomes increasingly necessary to consider, greater use of spatio-temporal models for 80 

standardizing fisheries-dependent CPUE data will likely be warranted. 81 
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1. Introduction 82 

Stock assessments, and subsequent fisheries management advice, rely largely on 83 

fisheries-dependent data, i.e., data that are collected with the assistance of fishers (Maunder 84 

and Punt, 2004). Many stock assessment models use indices of relative abundance to fit 85 

predicted fish abundances or biomasses and to estimate stock parameters (Maunder and Starr, 86 

2003; Lynch et al., 2012). Nearly all of the indices of relative abundance employed in the 87 

stock assessments of highly migratory populations and other fish populations lacking 88 

fisheries-independent surveys are derived from fisheries-dependent catch-per-unit-effort 89 

(CPUE) data (Bishop, 2006; Maunder et al., 2006; Walter et al., 2014a). However, as fisheries 90 

do not randomly sample fish stocks, it is necessary to “standardize” fisheries-dependent 91 

CPUE data to account for confounding factors that influence catchability which, if not 92 

accounted for, could result in a non-proportional relationship between fisheries-dependent 93 

CPUE and true stock abundance (Walters, 2003; Maunder and Punt, 2004; Ye and Dennis, 94 

2009). Various methods have been developed to perform CPUE standardization (Maunder 95 

and Punt, 2004). To improve confidence in stock assessment outcomes and the fisheries 96 

management decisions based on these outcomes, it is critical to evaluate and compare CPUE 97 

standardization methods under different scenarios about fish abundance trends and the 98 

distribution of fish and fishing effort across time and space (Bigelow and Maunder, 2007; 99 

Goodyear, 2003; Lynch et al., 2012; Campbell, 2015). 100 

Conventional methods for standardizing CPUE data consist of fitting generalized 101 

linear models (GLMs; McCullagh and Nelder, 1989), generalized additive models (GAMs; 102 

Wood, 2006) or generalized linear mixed models (GLMMs; Breslow and Clayton, 1993) 103 

integrating covariates influencing catchability to CPUE data. Often, the GLMs used for CPUE 104 

standardization simply include fixed year and area effects (e.g., the GLMs employed for 105 

standardizing the CPUE data of highly migratory species such as blue marlin (Makaira 106 



5 

 

nigricans); Forrestal et al., 2017). Hereafter, this basic CPUE standardization method is 107 

referred to as the “GLM” method (Table 1). The GLMs and GLMMs used for CPUE 108 

standardization sometimes also include a year-area interaction term when it is thought that 109 

annual trends in abundance may differ among areas of the study region (e.g., Nakano, 1989; 110 

Chang, 2003; Miyabe and Takeuchi, 2003; Forrestal et al., 2017). In their seminal paper, 111 

Maunder and Punt (2004) emphasized that the appropriate way to deal with year-area 112 

interactions is either to employ GLMMs integrating the year-area interaction term as a 113 

random effect (henceforth the “GLMMint” method), or to use GLMs integrating the year-area 114 

interaction term as a fixed effect and then weight GLM predictions for the individual area 115 

strata by the surface area of these area strata (see below). Employing GLMs integrating a 116 

year-area interaction term as a fixed effect and not weighting GLM predictions for the 117 

individual area strata by the surface area of these area strata (henceforth the “GLMint” 118 

method) negates the interest of the year-area interaction term, as the index of relative 119 

abundance will then be dependent and vary upon the specific area stratum chosen (Maunder 120 

and Punt, 2004; Lynch et al., 2012; Campbell, 2015). 121 

The CPUE standardization methods that take into account the surface area of the areas 122 

making up the study region to weight CPUE observations have been studied in detail in 123 

Campbell (2004, 2015). Hereafter, we refer to these methods as the “GLMwt” and 124 

“GLMwt.int” methods, depending on whether they integrate a fixed year-area interaction term 125 

or not. With the GLMwt and GLMwt.int methods, first, CPUE data are standardized for 126 

individual areas and years, then they are multiplied by the surface areas of their respective 127 

areas and, finally, an index of relative abundance is computed as the sum of the products of 128 

standardized CPUE data and surface areas (Campbell, 2004, 2015; Maunder and Punt, 2004). 129 

In addition to promoting the weighting of the year-area interactions by the surface area of 130 

each area of the study region, Campbell (2004, 2015) argued that weights should be assigned 131 
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to raw CPUE data based on the year-area stratum to which they belong when the number of 132 

observations in each year-area stratum varies substantially. Assigning prior weights to raw 133 

CPUE data allows for a balanced dataset for GLM-parameter estimation (Campbell, 2015). 134 

Hereafter, we refer to the CPUE standardizing methods assigning prior weights to raw CPUE 135 

data as the “GLMprwt” and “GLMprwt.int” methods, depending on whether they integrate a 136 

fixed year-area interaction term or not. 137 

Some CPUE standardization methods offer a more sophisticated treatment of spatio-138 

temporal variation by accounting for spatial and/or spatio-temporal autocorrelation. GAMs 139 

can account for spatial autocorrelation at a broad spatial scale through the integration of an 140 

interaction term between eastings and northings (i.e., longitude and latitude expressed in 141 

UTM coordinates), and for spatio-temporal autocorrelation at a broad spatial scale by nesting 142 

the year effect within the interaction term between eastings and northings (Su et al., 2011; 143 

Grüss et al., 2016, 2019). Hereafter, we refer to the CPUE standardizing methods using 144 

GAMs accounting for spatial and/or spatio-temporal autocorrelation as the “GAM” and 145 

“GAMint” methods, depending on whether they account for spatio-temporal autocorrelation 146 

at a broad spatial scale or not. Spatio-temporal models take a step further and exploit the 147 

property of spatial and spatio-temporal structure at a fine spatial scale to then predict variables 148 

of interest (Thorson et al., 2015; Grüss et al., 2017). Recent years have seen the emergence of 149 

spatio-temporal modeling methods for standardizing CPUE data (e.g., Pereira et al., 2012; 150 

Berg et al., 2014; Walter et al., 2014b; Thorson et al., 2015; Cao et al., 2017). Due to their 151 

properties, spatio-temporal models are particularly compelling for standardizing the CPUE 152 

data obtained from observers, i.e., the trained personnel placed on fishing boats to collect 153 

data. In fact, the data collected by observers are often clustered since they tend to be repeated 154 

samples from the same fishing boats at similar sites, and they cover only a limited spatial and 155 

temporal extent of the fishery of interest (Beerkircher et al., 2002; Walter et al., 2014b). 156 



7 

 

Furthermore, observer data could have sampling bias, as fishing boats with observers on 157 

board may try to avoid locations where bycatch is high (Benoît and Allard, 2009; Walter et 158 

al., 2014b), above and beyond the inherent potential biases of fisheries-dependent data.  159 

Data simulators are valuable tools for evaluating CPUE standardization methods as 160 

they allow for a known true annual trend in fish abundance (Lynch et al., 2012; Forrestal et 161 

al., 2019b). Over recent years, several simulation analyses have been carried out for 162 

evaluating and comparing CPUE standardization methods (e.g., Carruthers et al., 2010, 2011; 163 

Lynch et al., 2012; Pereira et al., 2012; Ono et al., 2015; Thorson et al., 2016; Forrestal et al., 164 

2017, 2019b). For example, Carruthers et al. (2011) employed spatial production models to 165 

simulate theoretical commercial fisheries, and then compared the performance of variants of 166 

the GLM method applied to CPUE data from the theoretical commercial fisheries. Another 167 

example is that of Lynch et al. (2012), who developed a data simulator for running a 168 

comparison of the accuracy of the GLM method and an habitat-based standardization method 169 

applied to CPUE data from the Atlantic Japanese longline fishery. No published study has 170 

utilized simulation analysis to compare the performance of CPUE standardization methods 171 

offering contrasting treatments of spatio-temporal variation (e.g., GLM vs. GLMMint vs. 172 

GAM vs. spatio-temporal method). 173 

In this study, we evaluated and compared nine CPUE standardization methods offering 174 

contrasting treatments of spatio-temporal variation (Table 1), ranging from the basic GLM 175 

method to a sophisticated method using the Vector Autoregressive Spatio-temporal Model 176 

(henceforth the “VAST” method; Thorson, 2019). We applied these nine CPUE 177 

standardization methods to Atlantic blue marlin CPUE data collected by fisheries observers. 178 

Blue marlin is a large, highly migratory species of substantial importance to recreational and 179 

artisanal fisheries and primarily a bycatch species of open-ocean longline fleets (Sharma et 180 

al., 2017). Firstly, we evaluated the nine CPUE standardization methods utilizing simulated 181 
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data from the U.S. pelagic longline fishery developed with the LLSIM data simulator 182 

(Forrestal et al., 2017; Goodyear et al., 2017). Next, the CPUE data from the simulated 183 

pelagic longline fishery were subsampled to mimic sampling by an observer program. We 184 

either randomly subsampled 10% of the trips, or we selected 10% of the trips such that trips 185 

with lower than average catch rate were selected in a higher proportion, resulting in a biased 186 

sample that might reflect the process of an observer bias, where fishing trips with observers 187 

tend to avoid locations with high bycatch rates. We then applied the CPUE standardization 188 

methods to the subsampled CPUE data in a design where the model developer (Arnaud Grüss) 189 

did not know any details regarding the LLSIM simulations and the environmental conditions 190 

in the system simulated in LLSIM. Secondly, we applied the contrasting CPUE 191 

standardization methods to CPUE data collected by the National Marine Fisheries Service 192 

(NMFS) Pelagic Observer Program (Beerkircher et al., 2002) over the period 1992-2017.  193 

 194 

2. Material and methods 195 

2.1. Study region 196 

Our study region is the portion of the North Atlantic shown in Fig. 1. This region 197 

encompasses the ten NMFS areas defined for stock assessments of the International 198 

Commission for the Conservation of Atlantic Tunas (ICCAT) (Fig. 1): (1) the Gulf of Mexico 199 

(GOM); (2) the Mid Atlantic Bight (MAB); (3) the South Atlantic Bight (SAB); (4) Florida 200 

East Coast (FEC); (5) the Caribbean (CAR); (6) the Northeast Coastal area (NEC); (7) the 201 

Sargasso area (SAR); (8) the Northeast Distant area (NED); (9) the North Central Atlantic 202 

(NCA); and (10) the Offshore South area (OFS). To be able to utilize the GAM and VAST 203 

methods, we produced a 1° x 1° spatial grid covering the entire study region, and we 204 
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estimated the surface area of the cells of that spatial grid. The spatial grid for the North 205 

Atlantic includes 3,079 cells.  206 

 207 

2.2. LLSIM data 208 

In the present study, we employed the longline CPUE data simulator LLSIM 209 

(Forrestal et al., 2017, 2019a; Goodyear, 2017; Goodyear et al., 2017). In brief, the core of 210 

LLSIM is the computation of the catch of the U.S. pelagic longline fishery on a single hook of 211 

a longline set (Forrestal et al., 2017). Each hook is characterized by a depth distribution and a 212 

geographical position (latitude, and longitude) and is associated with a specific year, month, 213 

fraction of daylight and position along the longline. All the characteristics of the hook are 214 

associated with the individual longline set. LLSIM simulates the catch of the pelagic longline 215 

fishery as a stochastic process for each of the hooks of each longline set. The region covered 216 

by LLSIM extends from -35° latitude to 55° and from -95° longitude to 20°; however, only 217 

LLSIM data for the portion of that region shown in Fig. 1 were considered in this study. The 218 

region covered by LLSIM is broken down into 1° x 1° cells, which each includes 46 depth 219 

data. To make computations, LLSIM integrates fish population size, a gear coefficient and a 220 

habitat coefficient for each longline set. In each of the 1° x 1° cells, the habitat coefficient 221 

integrates the hook-depth probabilities with fish relative density in each of the 46 depth strata 222 

apportioned by the fraction of the longline sets that operate in hours of daylight and darkness. 223 

The hook-depth probabilities are derived from the measurements made by time-depth 224 

recorders attached to longlines of the U.S. pelagic longline fleet (Goodyear, 2017). The three-225 

dimensional patterns of fish density considered by LLSIM come from a volume weighted 226 

habitat suitability model developed in Goodyear (2016). Goodyear (2016)’s habitat suitability 227 

model uses information on blue marlin oxygen tolerance from Brill (1994)‘s study, as well as 228 
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temperature utilization and diel ΔT patterns from tagged blue marlins, to determine the three-229 

dimensional patterns of blue marlin density from environmental data from a coupled ocean-230 

biogeochemical model.  231 

 The LLSIM data employed in the present study were for three virtual blue marlin 232 

populations that had the exact same characteristics except that one maintained a constant 233 

abundance over time (Population 1), one was generally declining (Population 2) and the third 234 

one was generally increasing (Population 3) (Figs. 2a-c). LLSIM provided us with data for 235 

294,305 longline sets for the U.S. pelagic longline fishery for each of the three populations, 236 

which covered the period 1987-2015. Catch was expressed as the number of blue marlins 237 

caught during the longline set, and fishing effort was expressed as the number of hooks in the 238 

set. CPUE was then the number of blue marlins caught per 1,000 hooks. In addition to catch 239 

and fishing effort data, LLSIM provided values for a number of parameters, including year, 240 

season, the type of hook used, the number of light sticks used, the type of bait used, and the 241 

number of hooks between floats (Table 2). NMFS areas were assigned based on the latitude 242 

and longitude associated with each simulated longline set.  243 

 LLSIM offers some advantages over data simulators employed in previous CPUE 244 

standardization studies. Previous CPUE standardization studies generally used simplified data 245 

simulators that closely resembled the mechanics of the CPUE standardization models (e.g., 246 

Lynch et al., 2012; Carruthers et al., 2010). By contrast, LLSIM is based on conditioning of 247 

observed catch rates to complex layers of oceanographic data, real-world fleet dynamics and 248 

fisheries-dependent variables. Thus, the underlying dynamics of LLSIM are governed by 249 

"unobservable", non-linear environmental processes that are far more complex than the subset 250 

of information that is communicated to CPUE standardization models, making the simulation-251 

evaluation process with LLSIM less idealized. Furthermore, the common challenges, such as 252 

violation of independence between fishing sets, are captured (at least spatially) by LLSIM. 253 
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The evaluation component of the simulation-evaluation process conducted in this study was 254 

such that the model developer (Arnaud Grüss) did not know any details regarding the LLSIM 255 

simulations and the environmental conditions in the system simulated in LLSIM.  256 

 257 

2.3. CPUE standardization methods considered in this study  258 

In this study, we considered nine CPUE standardization methods (Table 1), which we 259 

describe below. The raw CPUE data from LLSIM included many zeros. In this context, it was 260 

appropriate to fit delta GLMs, GAMs and GLMMs (Lo et al., 1992; Stefánsson, 1996; Barry 261 

and Welsh, 2002). The delta approach involves modeling the probability of encounter of a 262 

fish population assuming a binomial distribution, and the mean CPUE when fish are 263 

encountered assuming a lognormal distribution, and then multiplying the results together to 264 

obtain an overall standardized CPUE (Lo et al., 1992; Grüss et al., 2014). Future studies could 265 

explore other variants of the delta approach (e.g., Thorson, 2017), though we hypothesize that 266 

any improvements in statistical efficiency will affect CPUE standardization methods similarly 267 

and will not affect relative performance among the nine standardization methods explored in 268 

this study. Moreover, for all CPUE standardization methods, no model selection was 269 

conducted as all the covariates influencing catchability (henceforth “catchability covariates”) 270 

were deemed likely to influence CPUE. 271 

 272 

2.3.1. The GLM, GLMint and GLMMint methods 273 

The delta GLMs we developed for the GLM method estimated terms for year and area 274 

as fixed effects and integrated the fixed effects of catchability covariates and no year-area 275 
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interaction term. We fitted both the binomial GLMs and the lognormal GLMs making up 276 

these delta GLMs in the R environment, following the equation: 277 

���� = ���	 + �����
 + �	�� + ℎ��� + ���� + ���ℎ� + ℎ�� (1) 

where � is either the probability of encounter when given binomial response data, or an 278 

estimate of CPUE when given non-zero CPUE data; � represents the link function between � 279 

and each covariate (logit in the case of the binomial GLMs, and log in the case of the 280 

lognormal GLMs); ℎ��� is the type of hook used; ���� is the type of bait used; ���ℎ� is the 281 

number of light sticks used expressed as a categorical variable; and ℎ�� is the number of 282 

hooks between floats expressed as a categorical variable; �����
, ℎ���, ����, ���ℎ� and ℎ�� 283 

are all catchability covariates.  284 

The delta GLMs we developed for the GLMint method were similar to those 285 

developed for the GLM method, except that they also included a year-area interaction term 286 

(���	 ∗ �	��) as a fixed effect. We fitted both the binomial GLMs and the lognormal GLMs 287 

making up these delta GLMs in the R environment, following the equation: 288 

���� = ���	 + �����
 + �	�� + ℎ��� + ���� + ���ℎ� + ℎ�� + ���	 ∗ �	�� (2) 

  289 

The delta GLMMs we developed for the GLMMint method were similar to the delta 290 

GLMs developed for the GLMint method, except that the ���	 ∗ �	�� term was included in 291 

the binomial and lognormal GLMMs as a random rather than as a fixed effect. The binomial 292 

and lognormal GLMMs developed for the GLMint method were fitted using the “glmer” 293 

function in the “lme4” library for R (Bates et al., 2015). 294 

 For the GLM, GLMint and GLMMint methods, following Punt et al. (2000) and Ono 295 

et al. (2015), we predicted mean annual probability of fish encounter and mean annual CPUE 296 

when fish are encountered with the fitted binomial and lognormal GLMs or GLMMs, using 297 

the levels of the season, area, hook, bait, light and hbf factors with the largest sample size 298 



13 

 

(Table 2). Then, the predicted mean probability of fish encounter was multiplied by the 299 

predicted mean annual CPUE when fish are encountered to generate the predicted total CPUE 300 

in each year. The standard errors of the predictions of the delta GLMs or GLMMs were 301 

computed from the standard errors of the predictions of the binomial and lognormal GLMs or 302 

GLMMs using the formula presented in Lo et al. (1992).  303 

It is worth reiterating that employing the GLMint method negates the interest of the 304 

year-area interaction term, as a specific area stratum then needs to be chosen to construct an 305 

index of relative abundance (Maunder and Punt, 2004; Lynch et al., 2012; Campbell, 2015).  306 

Therefore, it would not be relevant to use the GLMint method evaluated here in the real 307 

world; we considered the GLMint method here solely to explore the consequences of 308 

integrating the year-area interaction effect in a GLM as a fixed vs. as a random effect. 309 

 310 

2.3.2. The GLMwt, GLMwt.int, GLMMprwt and GLMprwt.int methods 311 

The GLMwt and GLMwt.int methods consisted of fitting binomial and lognormal 312 

GLMs with and without a fixed ���	 ∗ �	�� term following, respectively, Eqs. (1) and (2), 313 

and then making a series of calculations rather than solely multiplying the predictions of 314 

binomial and lognormal GLMs together (see below). The GLMprwt and GLMprwt.int 315 

methods were similar, except that they assigned prior weights to the data based on the year-316 

area stratum to which the data belonged. Following Campbell (2015), when the GLMprwt and 317 

GLMprwt.int methods were employed, a weight ����ℎ��,� was assigned to an observation 318 

for year y and area a as follows: 319 

����ℎ��,� = �������	��� . 1
�,� 
(3) 
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where 
�,� is the number of observations for year y and area a; ���� is the total number of 320 

observations; and ���	��� is the total number of strata considered, with ���	��� = �� ×321 

��, where �� is the number of years considered (29 when working with LLSIM data; 26 322 

when working with real observer data) and �� is the number of areas considered (10).  323 

When the GLMwt, GLMwt.int, GLMprwt and GLMprwt.int methods are utilized, the 324 

estimation of annual CPUEs takes place in three steps (Campbell, 2004, 2015). First, 325 

probabilities of encounter are predicted with fitted binomial GLMs and CPUEs when fish are 326 

encountered are predicted with fitted lognormal GLMs for each year, each season and each 327 

area, using the levels of the hook, bait, light and hbf factors with the largest sample size 328 

(Table 2; Punt et al., 2000; Ono et al., 2015). Second, CPUE for year y and season s is 329 

estimated as follows: 330 

� !"�,# = $ %&�
'�

�() *	���,#,�+�,#,� 

(4) 

 331 

where *	���,#,� is the probability of encounter in year y, season s and area a predicted by the 332 

binomial GLM; +�,#,� is the CPUE when fish are encountered in year y, season s and area a 333 

predicted by the lognormal GLM; and %&� is the surface area (in km²) of area a. Third and 334 

lastly, annual CPUEs are computed from CPUE estimates for each year and season as 335 

follows: 336 

� !"� = 1�� $ � !"�,#
'#

#()  

 

(5) 

where �� is the number of seasons (4). We computed the standard errors of these annual 337 

CPUEs using the formula developed in Campbell (2015). Note that a geometric mean could 338 

be employed in lieu of the arithmetic mean in Eq. (5); the advantage of geometric mean is that 339 

it is scale invariant and less sensitive to outliers (Campbell, 2015).  340 
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 341 

2.3.3. The GAM method 342 

Regarding the GAM method, we fitted both the binomial GAMs and the lognormal 343 

GAMs making up the delta GAMs using the R package “mgcv” (Wood and Augustin, 2002; 344 

Wood, 2006), following the equation: 345 

���� = ���	 + ��,, -� + �����
 + ℎ��� + ���� + ���ℎ� + ℎ�� (6) 

where ��,, -� is product smooth fitted to eastings (,) and northings (-), which replaces the 346 

fixed effect of area and represents spatial autocorrelation at a broad spatial scale (Grüss et al., 347 

2016, 2019).  348 

As for the previous models, we predicted annual probability of fish encounter and 349 

annual CPUE when fish are encountered for the cells of the spatial grid for the North Atlantic 350 

with the fitted binomial and lognormal GAMs, using the levels of the season, hook, bait, light 351 

and hbf factors with the largest sample size (Table 2; Punt et al., 2000; Ono et al., 2015; Grüss 352 

et al., 2018b, 2018c). We then calculated mean annual probabilities of fish encounter over all 353 

cells of the spatial grid for the North Atlantic and mean annual CPUEs when fish are 354 

encountered over all cells of the spatial grid. Finally, these two results were multiplied 355 

together to predict total CPUEs in each year. We computed the standard errors of mean 356 

annual probabilities of fish encounter and mean annual CPUEs when fish are encountered 357 

using Marra and Wood (2012)’s method, which accounts for covariance between predictions 358 

for the individual cells of the spatial grid. We then employed the formula presented in Lo et 359 

al. (1992) to compute the standard errors of delta GAM predictions from the standard errors 360 

of mean annual probabilities of fish encounter and mean annual CPUEs when fish are 361 

encountered.  362 

 363 
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2.3.4. The VAST method 364 

The VAST method consisted of developing spatio-temporal delta GLMMs 365 

implemented using the R package “VAST” (Thorson, 2019), which is publicly available 366 

online (https://github.com/James-Thorson/VAST). Below, we describe the estimation of 367 

probabilities of encounter and CPUEs when fish are encountered with VAST. Additional 368 

details can be found in Appendix A1. One detail to highlight here is that, for computational 369 

reasons, 250 knots were defined in VAST via the application of a k-means algorithm (Thorson 370 

et al., 2015) to the locations of raw (observed) CPUE data. These knots are allocated spatially 371 

with a density proportional to sampling intensity, and indices of relative abundance are 372 

obtained by summing over the annual standardized CPUEs estimated for each knot. Another 373 

detail to highlight is that VAST integrates across the coefficients of the catchability covariates 374 

by implementing restricted maximum likelihood (REML) estimation (Grüss et al., 2018a, 375 

2018d).  376 

With VAST, probability of encounter was approximated using a spatio-temporal 377 

binomial GLMM with a logit link function and linear predictors, including a Gaussian 378 

Markov random field representing spatio-temporal variation in probability of encounter and 379 

another Gaussian Markov random field representing spatial variation in probability of 380 

encounter. The spatio-temporal binomial GLMM predicts probability of encounter pi at site 381 

s(i) as follows: 382 

*. = �����/) 0$ 1��2�-"&3.,�
'�

�() + $ 4#5�#67�2� %"&%8�.,#5�#67
'#5�#67#
#5�#67()

+ $ 9:66;�2� <88=.,:66;
':66;#
:66;() + $ >?�.@�2� A&BC.,?�.@

'?�.@#
?�.@()

+ $ �D.E:@�2� FBG<C.,D.E:@ + $ H:?I�2� <AJ.,:?I
':?I#
:?I()

'D.E:@#
D.E:@() + KL�.�,M�.��2� + NL�.��2� O 
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where -"&3.,� is a design matrix where -"&3.,� is one for the year � during which sample i 383 

was collected and zero otherwise; 1��2�
is an intercept that varies among years; 384 

%"&%8�.,#5�#67 is a design matrix where %"&%8�.,#5�#67 is one for the season level 385 

associated with sample i and zero otherwise; 4#5�#67�2�
 is a season effect on probability of 386 

encounter (where 4#5�#67�2� = 0 for the season level with the largest sample size for a 387 

population, where this constraint is imposed for identifiability of all year effects 1��2�
); 388 

������
� is the number of season levels (4); <88=.,:66; is a design matrix where 389 

<88=.,:66; is one for the hook level associated with sample i and zero otherwise; 9:66;�2�
 is a 390 

hook effect on probability of encounter (where 9:66;�2� = 0 for the hook level with the largest 391 

sample size for a population, where this constraint is imposed for identifiability of all year 392 

effects 1��2�
); �ℎ���� is the number of hook levels (3); A&BC.,?�.@ is a design matrix where 393 

A&BC.,?�.@ is one for the bait level associated with sample i and zero otherwise; >?�.@�2�
 is a bait 394 

effect on probability of encounter (where >?�.@�2� = 0 for the bait level with the largest sample 395 

size for a population, where this constraint is imposed for identifiability of all year effects 396 

1��2�
); ������ is the number of bait levels (4 when working with LSSIM data); FBG<C.,D.E:@ is 397 

a design matrix where FBG<C.,D.E:@ is one for the light level associated with sample i and zero 398 

otherwise; �D.E:@�2�
 is a light effect on probability of encounter (where �D.E:@�2� = 0 for the light 399 

level with the largest sample size for a population, where this constraint is imposed for 400 

identifiability of all year effects 1��2�
); ����ℎ�� is the number of light levels (4); <AJ.,:?I is a 401 

design matrix where <AJ.,:?I is one for the hbf level associated with sample i and zero 402 

otherwise; H:?I�2�
 is an hbf effect on probability of encounter (where H:?I�2� = 0 for the hbf level 403 

with the largest sample size for a population, where this constraint is imposed for 404 

identifiability of all year effects 1��2�
); �ℎ��� is the number of hbf levels (5 when working 405 
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with LSSIM data; 4 when working with real observer data); KL�.�,M�.��2�
 is the spatially correlated 406 

variability in probability of encounter at the knot J(i), which is the nearest knot to sample i, in 407 

year -��� in which sample i was collected; and NL�.��2�
 is the spatially correlated variability in 408 

probability of encounter at the knot J(i) that is persistent among years. Both KL�.�,M�.��2�
 and NL�.��2�

 409 

are random effects.  410 

Similarly, with VAST, positive catch rate was approximated using a spatio-temporal 411 

lognormal GLMM with a log link function and linear predictors, including a Gaussian 412 

Markov random field representing spatio-temporal variation in positive catch rate and another 413 

Gaussian Markov random field representing spatial variation in positive catch rate. The 414 

spatio-temporal lognormal GLMM predicts positive catch rate λi at site s(i) as follows: 415 

Q. = �R* 0$ 1��S�-"&3.,�
'�
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(8) 

where the parameters on the right side of Eq. (8) have the same meaning and characteristics as 416 

the parameters on the right side of Eq. (7), except that they apply to log-catch rate.  417 

To make predictions with fitted spatio-temporal GLMMs, we assumed that the 418 

Gaussian Markov random field in each cell of the spatial grid for the North Atlantic was equal 419 

to the value of the random field at the closest knot. Consequently, the surface area %&T  420 

associated with knot j was calculated as the number of cells of the spatial grid for the North 421 

Atlantic associated with knot j times the surface areas of these cells. It was then possible to 422 

calculate total CPUE in year y across our entire study region as follows: 423 
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where 1X��2�
 and 1X��S�

 are fixed effects of year estimated through maximum likelihood 424 

estimation; and KT̂,��2�
, NZT�2�

, KT̂,��S�
 and NZT�S�

 are random effects set to the value that maximizes 425 

the joint likelihood conditional on the estimated value of fixed effects of year (Thorson et al., 426 

2015). The standard errors of the annual CPUEs predicted by the spatio-temporal GLMMs 427 

were computed using a generalization of the delta method (Thorson et al., 2015; Thorson and 428 

Barnett, 2017).  429 

 430 

2.4. Scenarios considered in this study 431 

 Three scenarios were considered for each of the three virtual blue marlin populations: 432 

(1) the “ALL” scenario, where all LLSIM data (i.e., the 294,305 simulated longline sets) were 433 

employed to standardize CPUE data; (2) the “10%” scenario, where 10% of the fishing trips 434 

simulated by LLSIM were randomly selected, and (3) the “10%BIAS” scenario, which 435 

consisted of selecting 10% of the fishing trips simulated by LLSIM such that trips with lower 436 

than average catch rate were selected in a higher proportion, resulting in a biased sample that 437 

might reflect the process of an observer bias where fishing trips with observers operate 438 

differently than ones without observers to avoid bycatch species (e.g., sea turtles). In the real 439 

world, the percentage of trips of the U.S. pelagic longline fishery sampled by observers each 440 

year varies from one year to the next, but is around 10% on average (Beerkircher et al., 2002).  441 

To build the 10% and 10%BIAS scenarios, we needed to work with fishing trips. 442 

However, LLSIM provided us with simulated longline sets. Therefore, we needed to assign 443 

each of the LLSIM longline sets to fishing trips, such that each fishing trip would have 444 
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longline sets around the same time and location. To generate fishing trips with these 445 

characteristics, we assigned fishing sets that were in the same year, month and NMFS area to 446 

the same fishing trip. This yielded a total of 18,870 fishing trips, with a median of 6 sets per 447 

trip and a maximum of 329. Since, in the real world, the number of longline sets per vessel 448 

month in the U.S. pelagic longline fishery has a median of 8 (range 1-40; Beerkircher et al., 449 

2002), we broke up the fishing trips that had more than 40 longline sets into trips with 8 sets 450 

each, counting from the first longline set in the dataset, so as to maintain any structure in the 451 

data that might be incorporated in longline set order. The resulting dataset had a total of 452 

37,327 fishing trips with a median of 8 longline sets each (range 1-40).   453 

 As mentioned above, the three virtual blue marlin populations had the exact same 454 

characteristics except that one maintained a constant abundance over time, one was generally 455 

declining and the third one was generally increasing. Therefore, with respect to the 10% 456 

scenario, it was possible to generate subsamples for the three virtual blue marlin populations 457 

together. Since the generation of subsamples for the 10% scenario is a stochastic process, we 458 

produced five subsamples for the 10% scenario so as to run five replicates of the scenario. 459 

To obtain subsamples to explore the 10%BIAS scenarios, we randomly drew 10% of 460 

fishing trips with a probability of sampling a particular trip (prob) generated from the 461 

equation: 462 

������*	��� = � + � × � (10) 

where C is here the total catch of blue marlin in the fishing trip under consideration. The 463 

parameters a and b were set so that the probability of sampling a given fishing trip was 0.1 at 464 

the mean catch level and decreased to 0.01 at the maximum catch level. This gave an overall 465 

sampling effort of around 10% of fishing trips, with a significantly lower probability of 466 

sampling fishing trips that catch more blue marlins. Since the catches varied between the three 467 
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virtual blue marlin populations, we generated different samples for each population. 468 

Furthermore, since the generation of subsamples for the 10%BIAS scenario is a stochastic 469 

process, for each virtual blue marlin population, we produced five subsamples for the 470 

10%BIAS scenario so as to run five replicates of the scenario.   471 

Following the best practices provided in Campbell (2015), for the ALL scenario and 472 

all replicates of the 10% and 10%BIAS scenarios, we constructed a “Walters’ table” from the 473 

raw CPUE data with a row for each year and a column for each area (Table 3 and Table A2). 474 

The Walters’ table for the ALL scenario showed that there were observations in all year-area 475 

strata (Table 3). By contrast, there were missing observations in many year-area strata for all 476 

replicates of the 10% and 10%BIAS scenarios (Table A2). Therefore, under the 10% and 477 

10%BIAS scenarios, it was necessary to impute CPUE values in unobserved year-area strata 478 

when working with the GLMwt.int and GLMprwt.int methods (Walters, 2003; Carruthers et 479 

al., 2010). There is no standard method for imputing CPUE values in unobserved year-area 480 

strata (Walters, 2003; Carruthers et al., 2010, 2011; Campbell, 2015). In this study, we used 481 

one of the imputation methods employed in Campbell (2015). This method consisted of 482 

imputing CPUE values in unobserved year-area strata by directly using the predictions made 483 

for those year-area strata by simpler GLMs not integrating a year-area interaction term.  484 

 To illustrate the usefulness of spatio-temporal models beyond CPUE standardization, 485 

we estimated the eastward and northward centers of gravity (COGs) of the virtual blue marlin 486 

populations and their effective area occupied with VAST when considering the ALL scenario 487 

(which uses all of the LLSIM data). The computation of COGs and effective areas occupied is 488 

described in Appendix A1.  489 

 490 

2.5. Evaluation and comparison of the CPUE standardization methods 491 
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 The first step in evaluating and comparing CPUE standardization methods was to plot 492 

the normalized estimated annual trend in CPUE for each method. Normalized CPUEs 493 

estimated for each standardization method were then compared amongst one another, as well 494 

as to the normalized virtual blue marlin population abundance (true abundance) (Figs. 2a-c) 495 

and to the normalized CPUEs calculated directly from the LLSIM data (nominal CPUEs) for 496 

each virtual blue marlin population. Normalization was carried out in all cases by dividing 497 

mean annual CPUEs or abundance by their mean value over the period from 1987-2015. 498 

Then, we assessed the performance of the CPUE standardization methods for each virtual 499 

blue marlin population and scenario based on three metrics: (1) a bias metric described below; 500 

(2) mean absolute error (MAE), which quantifies error in the estimated CPUEs; and (3) a 501 

confidence coverage metric described below. 502 

The bias metric we considered was the coefficient \ of the following linear model 503 

(Thorson et al., 2015):  504 

� !"U � = ] + \ × B� K�~��	_���0, àb� 

(11) 

where ] is an intercept;  � !"U � is the normalized estimated CPUE in year y; B� is the 505 

normalized true abundance in year y; K� is the “estimation error” in the normalized estimated 506 

CPUE; and àb is the variance of K. A \ of 1 is indicative that changes in true abundance are 507 

reflected accurately by the estimated CPUE, while a \ greater than 1 (lower than 1) indicates 508 

that � !"U � underestimates (overestimates) changes in true abundance (Wilberg et al., 2010; 509 

Thorson et al., 2015). It was not possible to calculate bias for Population 1, whose true 510 

abundance is constant over time (Fig. 2a). 511 

MAE was calculated for each virtual blue marlin population and scenario as (Willmott 512 

and Matsuura, 2005; Stow et al., 2009):  513 
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where �� is the number of years considered (29). The higher the MAE, the greater the error 514 

in the estimated CPUEs (Stow et al., 2009).  515 

Finally, for each virtual blue marlin population, scenario and standardization method, 516 

coverage was calculated as the percentage of years over the period 1987-2015 that the 50% 517 

confidence interval of the normalized estimated CPUE index contained the normalized true 518 

abundance (Agresti and Coull, 1998; Newcombe, 1998; Brown et al., 2001). We chose a 519 

nominal probability of 50% rather than 90 or 95% confidence intervals to provide greater 520 

contrast in performance. Well-performing confidence intervals are ones where the nominal 521 

(predetermined) probability equals the actual proportion of replicates where the confidence 522 

interval contains the true value. In our case, coverage values >50% indicate that the 523 

confidence intervals are too wide and coverage values <50% indicate that the confidence 524 

intervals are too narrow (Bolker, 2008; Johnson et al., 2016).  525 

 526 

2.6. Application of the CPUE standardization methods to real observer data 527 

 All CPUE standardization methods with the exception of the GLMint method were 528 

also applied to real observer data collected by the NMFS Pelagic Observer Program 529 

(Beerkircher et al., 2002) over the period 1992-2017. We did not consider the GLMint 530 

method, since, as explained earlier, this method is not relevant for standardizing CPUE data in 531 

the real world (Maunder and Punt, 2004; Lynch et al., 2012; Campbell, 2015). As was the 532 

case for the analysis conducted with LLSIM data, we worked with CPUE per set expressed as 533 

the number of blue marlins caught per number of hooks set. The catchability covariates 534 

considered for the application to real observer data were identical to those considered when 535 
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working with LLSIM data, except bait, which was excluded as a factor as more than 99% of 536 

the observations were with dead bait (Table 4). The “Walters’ table” we constructed from the 537 

raw NMFS Pelagic Observer Program CPUE data showed that were missing observations in 538 

40 year-area strata (i.e., in around 15.4% of the year-area strata; Table 5). Therefore, when 539 

working with the GLMwt.int and GLMprwt.int methods, we used one of the imputation 540 

methods employed in Campbell (2015), which consisted of imputing CPUE values in the 541 

unobserved year-area strata by directly using the predictions made for those year-area strata 542 

by simpler GLMs not integrating a year-area interaction term. When working with VAST, we 543 

also estimated the eastward and northward COGs and the effective area occupied of the blue 544 

marlin population, following the methodology described in Appendix A1.   545 

 546 

3. Results 547 

3.1. COGs and effective area occupied of the virtual blue marlin populations 548 

 The eastward and northward COGs and the effective area occupied of virtual blue 549 

marlin populations 1, 2, and 3 were estimated under the ALL scenario via the spatio-temporal 550 

GLMMs computed using VAST (Figs. 2d-l). This analysis suggested that Population 1, which 551 

maintained a constant abundance over the period 1987-2015 (Fig. 2a), also had a constant 552 

effective area occupied between 1987 and 2015 (Fig. 2f) and that, between 1996 and 2015, 553 

the COG of Population 1 moved northward (Fig. 2e). The spatio-temporal GLMMs indicated 554 

that the COG of Population 2, whose abundance generally declined over the period 1987-555 

2015 (Fig. 2b), moved northward between 1996 and 2015 but also westward in 2006 (Figs. 556 

2g-h). Moreover, the predicted effective area occupied of Population 2 decreased between 557 

2000 and 2006 and then stabilized (Fig. 2i). Finally, the spatio-temporal GLMMs indicated 558 

that the COG of Population 3, whose abundance generally increased over the period 1987-559 
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2015 (Fig. 2c), moved northward between 1996 and 2015 (Fig. 2k). The predicted effective 560 

area occupied of Population 3 increased slightly between 1987 and 1995 and was stable 561 

afterwards (Fig. 2l). 562 

 563 

3.2. Analyses conducted with LLSIM data  564 

 We considered three virtual blue marlin populations, three sampling scenarios (ALL, 565 

10%, and 10%BIAS) and nine standardization methods (GLM, GLMint, GLMMint, GLMwt, 566 

GLMwt.int, GLMprwt, GLMprwt.int, GAM, and VAST). Moreover, for each virtual blue 567 

marlin population, we ran five replicates of the 10% scenario and five replicates of the 568 

10%BIAS scenario. Therefore, we estimated a total of 3 * (1 + 5 + 5) * 9 = 297 indices of 569 

relative abundance. Under the 10% and 10%BIAS scenarios, there were instances where 570 

inclusion of the fixed year-area interaction term led to convergence issues with the binomial 571 

GLMs; convergence issues arise when any year-area stratum has 0% or 100% encounter rates, 572 

as noted in previous studies (Lynch et al., 2012; Campbell, 2015). When binomial GLMs 573 

integrating a fixed year-area interaction effect did not converge, we combined the predictions 574 

of a binomial GLM without a year-area interaction effect with the predictions of a lognormal 575 

model integrating a fixed year-area interaction effect.  576 

The relative sample size of the levels of the area factor and catchability covariates 577 

varied largely over the period 1987-2015 (Fig. 3 and Fig. A3), justifying the standardization 578 

of the LLSIM CPUE data. Notably: (1) the “unknown” hook type was dominant until 2004, 579 

after what virtually all the hooks used were circle hooks; and (2) the “unknown” bait type was 580 

employed in 1987 and 1988, while the “dead” bait type was dominant between 1989 and 2015 581 

(Fig. 3 and Fig. A3).  582 
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Overall, the indices of relative abundance estimated by all CPUE standardization 583 

methods matched true abundances well (Fig. A4). However, under the 10% and 10%BIAS 584 

scenarios, there were several instances where the standardization methods relying on GLMs 585 

integrating a fixed year-interaction effect (i.e., the GLMint, GLMwt.int and GLMprwt.int 586 

methods) resulted in poorly estimated indices of relative abundance (Figs. 4-5 and Figs. A4). 587 

We examine some of these instances in detail below.   588 

In general, CPUE standardization methods had relatively little bias (Fig. 6). An 589 

exception to this general pattern was Population 3 under the 10%BIAS scenario, for which 590 

two CPUE standardization methods (GLMprwt and GLMMint) noticeably underestimated the 591 

true changes in abundance. Under all scenarios and for all populations, generally, the 592 

GLMMint method had the strongest negative bias (representing hyperstability in the estimated 593 

index of abundance), while the GLMint method had the strongest positive bias. Under the 594 

ALL and 10% scenarios, the GLMprwt.int, VAST and GLMprwt methods had the lowest 595 

biases. Under the 10%BIAS scenario, the GLM and GAM methods had the lowest biases, the 596 

GLMprwt.int method had a relatively low negative bias similar to that of the VAST method 597 

for all populations combined and Population 2, and the GLMwt method had a relatively low 598 

negative bias similar to that of the VAST method for Population 3 (Fig. 6). 599 

MAE showed great variation among CPUE standardization methods (Fig. 7). Under 600 

all scenarios and for all populations, the GAM method was usually the CPUE standardization 601 

methods with the lowest MAE, followed closely by the VAST, GLMwt and GLMMint 602 

methods, in this order. Under the ALL scenario, the GLMint method was the method with the 603 

largest MAE, usually followed by the GLMwt.int and GLMprwt.int methods. Under the 10% 604 

scenario, the GLMprwt and GLMprwt.int methods, which both assigned prior weights to data 605 

based on the year-area stratum to which the data belonged, had, in general, the largest MAEs, 606 

followed by the GLMint method. An exception to this general pattern was Population 2, for 607 
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which the GLMint method had the largest MAE under the 10% scenario. Under the 10%BIAS 608 

scenarios, the GLMint, GLMprwt and GLMprwt.int methods had the largest MAEs (Fig. 7).  609 

Coverage also showed great variation among CPUE standardization methods, 610 

particularly under the ALL scenario (Fig. 8). Under all scenarios and for all populations, the 611 

VAST method had the coverage the closest to 50%, often followed by the GLMMint method. 612 

The good coverage of the GLMMint method was in great part due to the fact that its 613 

predictions were associated with large standard errors (Fig. A5). Under the ALL scenario, the 614 

GLMwt and GLMprwt methods had the coverages the farthest to 50% (Fig. 8), due to the fact 615 

that they predicted standard errors that were anomalously low (Fig. A5). Under the 10% and 616 

10%BIAS scenarios, the GLMprwt and GLMprwt.int methods had the lowest coverages (Fig. 617 

8). Moreover, under the 10% and 10%BIAS scenarios, the GAM method often had coverages 618 

that were much greater than 50%, indicating that this method often have confidence intervals 619 

that are too wide (Fig. 8). The results for the GAM method were due to the fact that its 620 

predictions were associated with large standard errors (Fig. A5).  621 

 To understand why, in some instances, the standardization methods relying on GLMs 622 

incorporating a fixed year-interaction effect (i.e., the GLMint, GLMwt.int, and GLMprwt.int 623 

methods) resulted in poorly estimated indices of relative abundance, we examined: (1) the 624 

results obtained for Population 1 under the 10%BIAS scenario with Replicate 2 (Fig. 4 and 625 

Figs. A6 and A7); and (2) the results obtained for Population 3 under the 10%BIAS scenario 626 

with Replicate 1 (Fig. 5 and Figs. A8 and A9). Note that, in addition to the poorly estimated 627 

indices of relative abundance obtained with the GLMint, GLMwt.int and GLMprwt.int 628 

methods, Figs. 4 and 5 illustrate the low coverage of the GLMprwt and GLMprwt.int 629 

methods. In the two cases examined here, the fixed year-area interaction term did not lead to 630 

convergence issues with the binomial GLMs. For the two cases, we: (1) plotted the year-area 631 

interaction coefficients of the binomial and lognormal GLMs developed for the GLMint 632 
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method (Figs. A6 and A8); and (2) produced maps showing the spatial distribution of 633 

observer data for each year of the period 1987-2015 (Figs. A7 and A9).   634 

 In the first case examined (Population 1, 10%BIAS scenario, Replicate 2), while the 635 

true abundance of the virtual blue marlin population was constant over the period 2000-2015, 636 

the GLMint method predicted the index of relative abundance to increase over that period 637 

(Fig. 4). This result is due to the fact that: (1) predictions were made with the GLMs 638 

developed for the GLMint method using the NEC factor level (binomial model) and the FEC 639 

factor level (lognormal model) (Table 2); and (2) the year-area interaction terms estimated for 640 

the FEC and NEC areas for the GLMs developed for the GLMint method tended to increase 641 

over the period 2000-2015 (Fig. A6). The GLMwt.int and GLMprwt.int methods, which 642 

weighted year-area interactions by the surface area of each NMFS area, downweighted the 643 

influence of the FEC and NEC areas and did not predict an increase in the index of relative 644 

abundance over the period 2000-2015; yet, the indices of relative abundance estimated by the 645 

GLMwt.int and GLMprwt.int methods fitted the true data more poorly than those estimated 646 

by some of the other CPUE standardization methods such as the VAST, GAM and GLMwt 647 

methods (Fig. 4). Almost all the year-area coefficients of the binomial and lognormal models 648 

fitted by the GLMwt.int method were non-significant at the 5% level. To further gauge the 649 

significance of the year-area interaction terms, for both the binomial and lognormal models 650 

fitted by the GLMwt.int method, we performed stepwise model selection by the Akaike 651 

Information Criterion (AIC), using the function “stepAIC” from the R package “MASS” 652 

(Venables and Ripley, 2002). The stepwise model selection procedure resulted in the year-653 

area interaction term being dropped from both the binomial and lognormal models.  654 

In the second case examined (Population 3, 10%BIAS scenario, Replicate 1), the 655 

GLMint method predicted erroneous spikes over the most recent years (e.g., in 2008; Fig. 5). 656 

These erroneous spikes were due to: (1) the fact that predictions were made with the GLMs 657 
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developed for the GLMint method using the NEC factor level (binomial model) and the FEC 658 

factor level (lognormal model) (Table 2); and (2) the year-area interaction coefficients 659 

estimated for the FEC and NEC areas for the GLMs developed for the GLMint method (e.g., 660 

which both peak in 2008; Fig. A8). Moreover, in the second case study examined, the 661 

GLMwt.int and GLMprwt.int methods estimated indices of relative abundance that fitted true 662 

abundances more poorly than those estimated by the GLMint method; the indices of relative 663 

abundance estimated by the GLMwt.int and GLMprwt.int methods exhibited additional 664 

erroneous spikes (e.g., in 2002 and 2006; Fig. 5). This result stems from the fact that the NED 665 

and NCA areas, which are located, respectively, in the northeast and the southeast of our 666 

study region, are associated with very large surface areas (Fig. A9) and high year-area 667 

interaction coefficients in some years (e.g., 2002 and 2006; Fig. A8). However, over the 668 

period 1996-2015, Population 3 was predicted to move northward (Fig. 2k). Consequently, 669 

the GLMwt.int and GLMprwt.int methods, which weight year-area interactions by the surface 670 

area of each NMFS area and give more weights to the NED and NCA areas than the GLMint 671 

method, overestimated relative abundance in some years (e.g., in 2002 and 2006; Fig. 5). 672 

 673 

3.3. Application of the CPUE standardization methods to real observer data 674 

 The CPUE standardization methods applied to real observer data tended to predict 675 

similar patterns, particularly a decline in the blue marlin population over the period 1998-676 

2004 followed by a relative stabilization of the population (Figs. 9 and 10). However, while 677 

the GLM, GLMMint GLMwt and GAM methods predicted a slight increase in blue marlin 678 

abundance in 1997-1998, the GLMwt.int, GLMprwt, GLMprwt.int and VAST methods 679 

predicted a marked peak in abundance for the same time period (Fig. 10). Moreover, the 680 

indices of relative abundance estimated with the GLMwt.int and GLMprwt.int methods were 681 
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more variable than those estimated with the other CPUE standardization methods, and they 682 

exhibited lots of peaks and troughs (Figs. 9 and 10). VAST predicted that blue marlin COG 683 

moved both eastward and southward in 1996-1997 and then moved slightly westward 684 

between 1998 and 2014 (Figs. 11a-b). VAST also predicted that the effective area occupied 685 

by blue marlin remained relatively constant over the period 1992-2017 (Fig. 11c).    686 

 To understand the estimated peak in relative abundance predicted for 1996-1997, we 687 

generated maps showing: (1) the spatial distribution of observer data for each year of the 688 

period 1992-2017 (which cannot be provided here or in the Supplementary data due to the 689 

confidentiality of the observer data); and (2) the standard errors associated with the indices of 690 

relative abundance estimated by the VAST method for each year of the period 1992-2017 691 

(Fig. A10). The first maps suggested that the predicted peak in relative abundance for 1996-692 

1997 may be in part due to a few fishing trips with high catch rates made off the northeast 693 

coast of Brazil, in an area where sets were not observed by the NMFS Pelagic Observer 694 

Program outside of 1996 and 1997. The second maps showed that: (1) the locations of the 695 

observer data collected in the area off the northeast coast of Brazil were used by VAST to 696 

define a relatively large knot in the southeasternmost corner of our study region; but that (2) 697 

despite the low number of samples and large surface area of that knot over which these 698 

samples were extrapolated, the standard errors associated with the indices of relative 699 

abundance predicted for that knot and adjacent knots were low, in 1996-1997, but also pre-700 

1996 and post-1997 (Fig. A10). 701 

 702 

4. Discussion  703 

 In general, fisheries-independent surveys use sampling designs which on average 704 

provide unbiased indices of relative abundance (Thompson, 2002). Unfortunately, because 705 
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fisheries-independent surveys are costly and time-consuming, they are generally conducted 706 

during specific months and rarely entirely cover large marine regions such as the North 707 

Atlantic (Lynch et al., 2012; Bourdaud et al., 2017). Consequently, many exploited fish 708 

populations such as Atlantic blue marlin are not monitored by fisheries-independent surveys 709 

(Lynch et al., 2012; Walter et al., 2014a). Instead, for these fish populations, indices of 710 

relative abundance are derived from fisheries-dependent CPUE data, which are collected with 711 

the assistance of fishers who adapt their fishing grounds and behavior based on prevailing 712 

environmental and socio-economic conditions and, perhaps, the presence of observers 713 

onboard (Walters, 2003; Maunder and Punt, 2004; Marchal et al., 2006; Walter et al., 2014a). 714 

Under these circumstances, it is critical to assess the performance of methods for 715 

standardizing fisheries-dependent CPUE data. In the present study, we evaluated and 716 

compared nine CPUE standardization methods, which offered contrasting treatments of 717 

spatio-temporal variation: (1) non-spatial methods that accounted or not for the interaction 718 

between the year and area effects (GLM, GLMint, and GLMMint); (2) methods that 719 

accounted or not for the interaction between the year and area effects, but also weighted or not 720 

model predictions for individual areas by the surface area of each these areas and/or assigned 721 

prior weights to raw CPUE data based on the year-area stratum to which the CPUE data 722 

belonged (GLMwt, GLMwt.int, GLMprwt, and GLMprwt.int); (3) a method that accounted 723 

for spatial autocorrelation at a broad spatial scale (GAM); and (4) a method that accounted for 724 

spatial and spatio-temporal autocorrelation at a fine spatial scale (VAST). 725 

Despite the substantial degradation of the simulated datasets by subsetting 10% 726 

randomly and then 10% nonrandomly, across all of the virtual blue marlin populations, the 727 

great majority of the CPUE standardization methods considered in this study managed to 728 

extract a relatively unbiased trend in relative abundance. While we do not have unequivocal 729 

evidence of observer effect bias occurring in the U.S. pelagic longline fishery, the commonly 730 
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employed GLM and GLMMint methods, the GAM method and the VAST spatio-temporal 731 

method seem to be fairly robust to this potential problem. In this study, there were also virtual 732 

populations for which other CPUE standardization methods (the GLMwt and GLMprwt.int 733 

methods) had a relatively low negative bias similar to that of the VAST method when the 734 

simulated datasets were nonrandomly subsampled to mimic observer bias (Fig. 6). We caveat 735 

these ideas with the observation that simulated data rarely perform as poorly as true 736 

observations, as it is difficult to mimic the full data generating process. Even 10% observer 737 

coverage (as was assumed in this study) may not be possible in many fisheries (National 738 

Marine Fisheries Service, 2016), and it is quite possible that the bias between what is 739 

observed and what is caught in an overall fishery may change over time.  740 

While the different CPUE standardization methods generally provided relatively 741 

unbiased trends in relative abundance, with exceptions noted below, we found that the VAST 742 

spatio-temporal method generally had one of the lowest biases, one of the lowest MAEs and 743 

coverage closest to 50%. The strong performance in simulations of the VAST method argues 744 

for greater consideration of spatio-temporal methods in standardization of fisheries-dependent 745 

CPUE data. Additionally, spatio-temporal methods are particularly suited for working with 746 

fisheries-dependent CPUE data, because they: (1) diminish the influence of repeated fishing 747 

operations in sites, thus decreasing the influence of selection bias by fishers; and (2) allow for 748 

imputation or extrapolation where CPUE is unknown (Walter et al., 2014a, 2014b). Moreover, 749 

VAST is useful not only for standardizing CPUEs and can also be used, among other things, 750 

for estimating COGs and effective areas occupied and conducting habitat and climate-751 

vulnerability assessments (see Thorson (2019) for a review). The spatio-temporal modeling 752 

platform VAST has benefited from numerous recent developments, including a GitHub 753 

repository enabling issue tracking (https://github.com/James-Thorson/VAST) and well-754 

documented example code accompanied by a detailed user guide (which can both be accessed 755 
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in GitHub). Also, VAST now has a fairly large and dynamic user community with numerous 756 

applications to fisheries-independent datasets, and the present study represents one of the very 757 

first applications of VAST to fisheries-dependent data (Thorson, 2019). However, when 758 

working with large datasets, VAST simulations can take a long computation time. For 759 

instance, it took us around four hours to run each of the VAST simulations under the ALL 760 

scenario with a laptop with a 2.6 GHz Intel Core i5-6440HQ processor, using single-thread.  761 

Our results suggest that good alternatives to the VAST method are the GLMMint 762 

method, i.e., the variant of the basic GLM method incorporating a random year-area 763 

interaction effect, and the GAM method. The GLMMint method had one of the lowest MAEs 764 

and one of the best coverages, yet this method also had the strongest negative bias. The 765 

GLMMint method is practical in that it obviates the need for imputing CPUE values in 766 

unobserved year-area strata when working with unbalanced datasets (Campbell, 2015). The 767 

GLMMint method also performs reasonably well and is flexible in terms of fixed and random 768 

effects structure; for example, it would probably be feasible to extend the random effect term 769 

so that the season effect is nested within area and year. However, the GLMMint method 770 

should ideally be utilized only if year-area interactions can be fully explained as random 771 

effects (e.g., do not show a significant trend; Cooke, 1997; Maunder and Punt, 2004; 772 

Campbell, 2015). The GAM method, which accounts for spatial autocorrelation at a broad 773 

spatial scale, may also be a good alternative to the VAST method, because it had the lowest 774 

MAE among the nine CPUE standardization methods we tested, as well as the lowest bias 775 

under the observer bias scenario. On the other hand, we also found that the GAM method had 776 

confidence intervals that were often too wide. In this study, for computational reasons, we did 777 

not consider the GAMint method, which also accounts for spatial autocorrelation at a broad 778 

spatial scale by integrating a ��,, -, �� = ���	� term (Wood, 2006). Had we used the 779 
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GAMint method in this study, we suspect that the GAMint method would have had a lower 780 

MAE than the GAM method, at the expense of exceedingly wide confidence intervals.  781 

It is important to note that the estimated coverages of the GLMMint and GAM 782 

methods are in large part due to the very large standard errors associated with their predictions 783 

(Fig. A5). As the CPUE standardization methods considered in this study rely on different 784 

procedures for computing standard errors from two independent models (a binomial and a 785 

lognormal models), some of the calculated standard errors may not be accurate. Therefore, to 786 

some extent, the utility of the coverage metric is dependent on the relative accuracy of the 787 

standard errors calculated by each CPUE standardization method. Thus, everything else equal, 788 

one may be more confident in using a CPUE standardization method with one of the lowest 789 

MAEs and one of the lowest biases (e.g., the GAM method) than a method with one of the 790 

lowest MAEs and one of the best coverages (e.g., the GLMMint method). 791 

In most cases, the year-area interaction effects in the simulated datasets were not very 792 

strong, such that the CPUE standardization methods that either did not estimate them (GLM, 793 

GLMwt, and GLMprwt) or estimated them as random effects (GLMMint) performed better 794 

than the standardization methods that estimated them as fixed effects and did (GLMwt.int, 795 

and GLMprwt.int) or did not (GLMint) use them in predictions. The GAM and the VAST 796 

methods model the spatio-temporal effects as fixed and random, respectively, and uses them 797 

in the predictions. Hence, the lack of substantial performance differences between including 798 

or not including year-area interactions can likely be attributed to the simulated datasets having 799 

year-area interaction effects that are not very strong. As no year-area interactions were 800 

imposed on the simulated data and would only have been emergent properties of the 801 

abundance trends, oceanography and habitat preferences of blue marlin, it is likely that any 802 

induced year-area interactions were nor very strong or directional. In this study, our main goal 803 

was to compare the performance of CPUE standardization methods integrating or not year-804 



35 

 

area interaction terms. For this reason, we did not conduct any model selection procedure 805 

(besides for understanding the results of one case study). Future studies interested in 806 

estimating indices of relative abundance based on the most parsimonious models should 807 

perform stepwise model selection by AIC (Venables and Ripley, 2002). This would allow 808 

dropping the year-area interaction term from the binomial and/or lognormal models if this 809 

interaction term is non-significant (along with non-significant catchability covariates), thereby 810 

improving the predictions of the CPUE standardization process.  811 

The greatest degradation in performance was with CPUE standardization methods 812 

relying on GLMs incorporating a fixed year-area interaction effect (i.e., the GLMint, 813 

GLMwt.int, and GLMprwt.int methods), which often resulted in poorly estimated indices of 814 

relative abundance, the largest MAEs and the lowest coverages (though not necessarily the 815 

largest biases). Similar results were obtained by Thorson and Ward (2013); using delta 816 

GLMMs, the authors found that a random year-area interaction often had better performance 817 

than a fixed year-area interaction when analyzing sparse fisheries-independent survey data. 818 

The literature generally recommends to include year-area interactions as random effects (e.g., 819 

Lynch et al., 2012) where the effects are often constrained by distributional assumptions such 820 

as to be normally distributed with a mean of zero. The main issue with the GLMint method is 821 

that it gives too much weight to areas whose year-area coefficients hit bounds, are highly 822 

erratic or have standard errors indicative of very poor estimation (Figs. A6 and A8). While the 823 

spatial weighting employed in the GLMwt.int and GLMprwt.int methods could potentially 824 

improve estimation by differentially weighting each year-area interaction coefficient, there is 825 

no guarantee that a poorly estimated coefficient will get a small weight. Quite the opposite 826 

happened in this study in some cases, where certain large spatial areas had very sparse 827 

sampling.  828 
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Another notable result of the present study was the poor performance of the methods 829 

assigning prior weights to data based on the year-area stratum to which the data belong (i.e., 830 

the GLMprwt and GLMprwt.int methods) under the 10% and 10%BIAS scenarios. When 831 

dealing with subsamples of the LLSIM data that mimic sampling by observers, the GLMprwt 832 

and GLMprwt.int methods often resulted in poorly estimated indices of relative abundance, 833 

and they had among the largest MAEs and among the lowest coverages. (Yet, the 834 

GLMprwt.int and GLMprwt methods had among the lowest biases; Fig. 6). This result was 835 

relatively surprising, given that one would a priori expect that assigning prior weights to data 836 

would compensate for a very unbalanced dataset by altering the relative influence of each data 837 

point (Campbell, 2015). However, we observed virtually no differences between the indices 838 

of relative abundance produced by the methods assigning prior weights to data and those not 839 

assigning prior weights to data (Figs. 4-5). Using simulated CPUE data for Pacific broadbill 840 

swordfish (Xiphias gladius) and the Australian pelagic longline fishery, Campbell (2015) also 841 

found little differences between the predictions of the methods assigning vs. not assigning 842 

prior weights to data. Furthermore, the author observed that assigning prior weights to data 843 

resulted in slightly more biased predictions. Campbell (2015) discussed that the results he 844 

obtained with the methods assigning or not assigning prior weights to data were likely due to 845 

the fact that definition of areas in his study region appropriately stratified CPUE spatial 846 

distribution.  847 

Thus, neither of the instances of poor performance reported in this study reflect upon 848 

the theory or merits of the GLMwt and GLMwt.int, GLMprwt and GLMprwt.int methods, but 849 

rather relate to the nature and representativeness of the data relative to the NMFS areas to 850 

which they are assigned. While the NMFS areas (Fig. 1) were chosen based on expert opinion 851 

and generally reflect homogenous fishing regions, they are of very different sizes and have 852 

very different sample coverage per unit area. This leads to correspondingly erratic estimates 853 
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of year-area interaction coefficients which may not be representative of the NMFS area to 854 

which they are assigned and, when weighted by the surface areas of the NMFS areas, can 855 

compound errors. For many fisheries, the area stratification chosen is not based on the 856 

biological characteristics of the fishery or the species of interest (such as homogeneity of fish 857 

density), but for other management-related reasons. Carruthers et al. (2011) found that GLMs 858 

with fixed year-area interaction terms performed better than GLMs without year-area 859 

interaction terms, which may have been because the authors employed a regular grid of cells 860 

to define areas, where each individual cell had a similar surface area such that no cells could 861 

dominate the predicted index of relative abundance. The fact that we relied on an irregular 862 

grid of cells to define areas where some cells had an extremely large surface area, combined 863 

with the fact that the LLSIM datasets were unbalanced spatially (Figs. A7 and A9), likely 864 

degraded the performance of the GLMwt.int and GLMprwt.int methods. Naturally, this raises 865 

the question: should we have developed better spatial stratification either by adopting a 866 

regular grid or by applying one of several algorithms that search for optimal partitioning to 867 

create homogenous spatial regions and minimize the strength of year-area interactions 868 

(Ichinokawa and Brodziak, 2010; Ono et al., 2015)?   869 

While a better spatial partitioning might have improved the performance of the 870 

GLMwt.int and GLMprwt.int methods, our results support using spatio-temporal modeling to 871 

obviate the need to specify a priori spatial partitioning entirely. A regular grid would likely 872 

exacerbate issues of missing data and would not achieve homogenous stratification or 873 

minimization of year-area interactions, whereas an optimal partitioning sensu Ichinokawa and 874 

Brodziak (2010) and Ono et al. (2015) would likely result in disparate area sizes and sample 875 

coverage. It may be possible to restrict the data to a limited spatial area of inference where 876 

sampling is more uniform, but this may greatly reduce the sample size and can lead to 877 

problems when fishing fleets shift spatial locations (Campbell, 2004). The essential problem 878 
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is one of confounding where all further results depend critically on the initial spatial partition. 879 

In situations where strong year-area interactions such as range contraction/range 880 

expansion/spatial depletion are likely to occur, spatio-temporal modeling approaches provide 881 

a consistent and compelling means of addressing them.  882 

Overall, the application to real observer data collected by the NMFS Pelagic Observer 883 

Program suggested that the relative abundance of the blue marlin population of the Atlantic 884 

declined over the period 1998-2004 and was relatively stable afterwards. VAST also 885 

suggested that Atlantic blue marlin COG may have moved slightly westward between 1998 886 

and 2014 (Fig. 11a). Such a trend could potentially be indicative of a small spatial overlap 887 

between the U.S. pelagic longline fishery and the expansion of the oxygen minimum zone in 888 

the Eastern Atlantic (Stramma et al., 2012).  889 

An issue observed with real observer data was the peak in abundance predicted in 890 

1996-1997 by the GLMwt.int, GLMprwt, GLMprwt.int and VAST methods (Figs. 9 and 10). 891 

An examination of the spatial distribution of observer data indicated that these peak CPUEs 892 

occurred off the northeast coast of Brazil and were the result of only three trips by two fishing 893 

vessels in 1996 and 1997 which had exceptionally high catch rates of blue marlin. Trips in 894 

these locations were rarely ever observed in the remaining time series and these three trips 895 

represent the only data for these southeasternmost spatial areas in 1996 and 1997, indicating 896 

that they have substantial leverage on the estimations. However, the standard errors associated 897 

with the predictions for the VAST knot defined from the observer data collected off northeast 898 

Brazil and adjacent knots were low (Fig. A10), which is indicative that the model prediction 899 

uncertainty was not increased by having very few samples to extrapolate over a large surface 900 

area. This is in contrast to traditional geostatistical theory where, assuming stationarity of 901 

spatial autocorrelation, having only a few samples to cover the entire southeastern prediction 902 

region would result in very large standard errors relative to prediction regions in other areas 903 
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which were much more comprehensively sampled. This indicates that, in application, care in 904 

developing the prediction knots is necessary to avoid overpredicting beyond the range of 905 

spatial autocorrelation. While methods such as VAST can avoid the a priori specification of 906 

spatial strata, they are not devoid of making some decisions regarding spatial structuring of 907 

the prediction area. Hence, some greater curation of the placement of knots when setting up 908 

VAST modeling approaches is recommended when working with spatially imbalanced 909 

fishery-dependent datasets. This was not done in the present study, because we worked in a 910 

design where the model developer was purposefully not provided with any details regarding 911 

the datasets being analyzed, though this is an important issue to consider in future studies. 912 

Contrary to the GLMwt.int, GLMprwt, GLMprwt.int and VAST methods, the GLMMint 913 

method did not predict a peak in abundance in 1996-1997. This is because the GLMMint 914 

method is a non-spatial method that models year-area interactions as random effects and that 915 

does not assign weights to year-area strata; thus, the few trips off the northeast coast of Brazil 916 

in 1996-1997 did not have a strong influence on the predictions made by the GLMMint 917 

method. 918 

The main avenues for future research we envision are the following ones: (1) an 919 

analysis of the consequences of differential patterns of observer coverage, spatial sampling 920 

distribution or observer bias; (2) improved consideration of spatial knot selection for VAST; 921 

and (3) evaluating the performance of CPUE standardization methods under conditions of 922 

stronger year-area interactions designed to mimic environmental changes and when area-923 

season and/or year-season interactions are considered. First, in the present study, we 924 

developed algorithms to mimic sampling by an observer program, which allocate longline sets 925 

to fishing trips so as to enable the application of CPUE standardization methods to 10% of the 926 

fishing trips; this percentage was chosen because this is the average percentage of trips 927 

sampled by the NMFS Pelagic Observer Program each year (Beerkircher et al., 2002). 928 
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However, future studies working with LLSIM data should take advantage of our algorithms to 929 

investigate whether sampling less or more than 10% of the fishing trips undertaken by the 930 

U.S. pelagic longline fishery would significantly alter the accuracy and precision of the 931 

indices of relative abundance estimated from CPUE data. Additionally, given the effect of a 932 

small number of spatial “outlier” trips in 1996 and 1997 on some indices using the real blue 933 

marlin data, it may be necessary to consider the potential influence of more isolated and 934 

sparse spatial samples which appear in the real data, as well as the impacts of variation in 935 

observer coverage across years. Second, given that sparse spatial samples can have undue 936 

influence on population trends and potentially, on COG inferences, it may be necessary to re-937 

evaluate the methodology of knot allocation which allocates knots spatially with a density 938 

proportional to sampling intensity (Thorson et al., 2015). Hence there are few knots where 939 

sampling intensity is low so that these few knots represent a very large spatial area. Future 940 

studies could instead place knots with uniform spatial area (i.e., using a two-dimensional 941 

grid), and this would likely have better performance when applied to spatially unbalanced 942 

datasets like those explored in the present study. Finally, evaluating CPUE standardization 943 

methods under conditions of stronger year-area interactions would be valuable for informing 944 

climate-vulnerability assessments, and also for checking whether the GLMwt.int and 945 

GLMprwt.int methods would then perform better than the GLMwt and GLMprwt methods, as 946 

would be expected in theory (Campbell, 2015). We also recommend future studies to examine 947 

the performance of CPUE standardization methods when area-season and/or year-season 948 

interactions are considered. In the case of Atlantic blue marlin, these interactions terms should 949 

explain more variation in the CPUE standardization models and would likely provide more 950 

contrast in the performance evaluation, given that seasonal environmental changes are 951 

considered in LLSIM and also largely influence Atlantic blue marlin ecology in the real world 952 

(Goodyear, 2016). Future studies will also need to explore whether CPUE standardization 953 
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models which include year-area, area-season and/or year-season interactions as random 954 

effects terms are adequate when these interactions are strong.  955 

In conclusion, the varying performance of the different CPUE standardization methods 956 

reflect their different treatments of spatio-temporal variation with the spatio-temporal method 957 

providing a more comprehensive and consistent treatment of this variation. This is in contrast 958 

with methods that simply weight predictions by large spatial areas, where it is critically 959 

important but particularly difficult to get the a priori spatial stratification correct before 960 

weighting. If year-area interactions are truly small in magnitude, random, spurious or 961 

ignorable, then the GLMMint method provides fairly good performance in CPUE 962 

standardization. The GAM method is another valuable alternative to spatio-temporal CPUE 963 

standardization methods. Moreover, some CPUE standardization methods not considered in 964 

this study, such as random forests (Li et al., 2015) or variants of the GLMwt.int and 965 

GLMprwt.int methods modeling year-area interactions as random effects (Campbell, 2015), 966 

could be employed in future studies. However, as issues of range contraction/expansion and 967 

shifts increase in frequency with environmental changes, evaluating them through the lens of 968 

arbitrary spatial strata will likely impede both detection and quantification of these 969 

phenomena. Hence, we encourage future studies to consider spatio-temporal modeling 970 

platforms such as VAST for standardizing fisheries-dependent CPUEs in different marine 971 

regions, so as to enable a generalization of the performance of spatio-temporal methods for 972 

standardizing fisheries-dependent CPUE data.  973 
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Figure captions 1190 

Fig. 1. Study region, located in the North Atlantic, which encompasses the ten National 1191 

Marine Fisheries Service (NMFS) areas defined for the stock assessments of the International 1192 

Commission for the Conservation of Atlantic Tunas (ICCAT): (1) the Gulf of Mexico 1193 

(GOM); (2) the Mid Atlantic Bight (MAB); (3) the South Atlantic Bight (SAB); (4) Florida 1194 

East Coast (FEC); (5) the Caribbean (CAR); (6) the Northeast Coastal area (NEC); (7) the 1195 

Sargasso area (SAR); (8) the Northeast Distant area (NED); (9) the North Central Atlantic 1196 

(NCA); and (10) the Offshore South area (OFS).  1197 

 1198 

Fig. 2. (a-c) Relative abundance, (d, g, j) eastward center of gravity (COG; in km), (e, h, k) 1199 

northward COG (in km) and (f, i, l) effective area occupied (in ln(km²)) of the three virtual 1200 

populations of blue marlin (Makaira nigricans) over the period 1987-2015. (a, d-f) are for 1201 

Population 1, (b, g-i) are for Population 2, and (c, j-l) are for Population 3. (a-c) show the true 1202 

annual abundances of the virtual populations of blue marlin relative to their mean over the 1203 

period 1987-2015, while (d-l) were estimated by the spatio-temporal modeling platform 1204 

VAST from all the blue marlin catch-per-unit-effort data provided by the longline catch-per-1205 

unit-effort data simulator LLSIM. For (d-l), the shaded area represents 95% confidence 1206 

intervals. 1207 

 1208 

Fig. 3. Evolution over the period 1987-2015 of the sample size of the levels of the factors 1209 

considered in the analyses conducted with data from the longline catch-per-unit-effort 1210 

(CPUE) data simulator LLSIM. Here, all the data provided by LLSIM are considered.  1211 

 1212 

Fig. 4. Annual time series of nominal and estimated catch-per-unit-effort (CPUE) relative to 1213 

mean CPUE for the virtual population of blue marlin (Makaira nigricans) #1, under the 1214 



48 

 

10%BIAS scenario (see legend for color code). Replicate #2 is considered here. Nine methods 1215 

were employed to estimate CPUEs (Table 1). The annual time series of the true simulated 1216 

abundance of the virtual population of blue marlin #1 divided by its mean simulated 1217 

abundance is also given here. The dashed lines represent the 95% confidence intervals of 1218 

estimated CPUEs.  1219 

 1220 

Fig. 5. Annual time series of nominal and estimated catch-per-unit-effort (CPUE) relative to 1221 

mean CPUE for the virtual population of blue marlin (Makaira nigricans) #3, under the 1222 

10%BIAS scenario (see legend for color code). Replicate #1 is considered here. Nine methods 1223 

were employed to estimate CPUEs (Table 1). The annual time series of the true simulated 1224 

abundance of the virtual population of blue marlin #3 divided by its mean simulated 1225 

abundance is also given here. The dashed lines represent the 95% confidence intervals of 1226 

estimated CPUEs. 1227 

 1228 

Fig. 6. Bias of estimated annual catches-per-unit-effort (CPUEs) for the simulated populations 1229 

of blue marlin (Makaira nigricans), under three scenarios (ALL, 10%, and 10%BIAS). For 1230 

the 10% and 10%BIAS scenarios, barplots represent mean biases over five replicates, while 1231 

the black bars overlaid on barplots represent minimum and maximum biases over the five 1232 

replicates. See the main text for details on the scenarios. Nine methods were employed to 1233 

estimate CPUEs (Table 1). 1234 

 1235 

Fig. 7. Mean absolute error (MAE) of estimated annual catches-per-unit-effort (CPUEs) for 1236 

the simulated populations of blue marlin (Makaira nigricans), under three scenarios (ALL, 1237 

10%, and 10%BIAS). For the 10% and 10%BIAS scenarios, barplots represent mean MAEs 1238 

over five replicates, while the black bars overlaid on barplots represent minimum and 1239 
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maximum MAEs over the five replicates. See the main text for details on the scenarios. Nine 1240 

methods were employed to estimate CPUEs (Table 1). 1241 

 1242 

Fig. 8. Coverage (in %) for the simulated populations of blue marlin (Makaira nigricans), 1243 

under three scenarios (ALL, 10%, and 10%BIAS). Coverage is the percentage of years over 1244 

the period 1987-2015 the 50% confidence interval for a normalized estimated catch-per-unit-1245 

effort (CPUE) contains the normalized true abundance. For the 10% and 10%BIAS scenarios, 1246 

barplots represent mean coverages over five replicates, while the black bars overlaid on 1247 

barplots represent minimum and maximum coverages over the five replicates. See the main 1248 

text for details on the scenarios. Nine methods were employed to estimate CPUEs (Table 1). 1249 

 1250 

Fig. 9. Annual time series of nominal and estimated catch-per-unit-effort (CPUE) relative to 1251 

mean CPUE for the Atlantic blue marlin (Makaira nigricans) population, computed from the 1252 

data collected within the National Marine Fisheries Service Pelagic Observer Program over 1253 

the period 1992-2017. All the methods listed in Table 1 except the GLMint method were 1254 

employed to estimate CPUEs. 1255 

 1256 

Fig. 10. Annual time series of estimated catch-per-unit-effort (CPUE) relative to mean CPUE 1257 

for the Atlantic blue marlin (Makaira nigricans) population, computed from the data collected 1258 

within the National Marine Fisheries Service Pelagic Observer Program over the period 1992-1259 

2017. All the methods listed in Table 1 except the GLMint method were employed to estimate 1260 

CPUEs. 1261 

 1262 

Fig. 11. (a) Eastward center of gravity (COG; in km), (b) northward COG (in km) and (c) 1263 

effective area occupied (in ln(km²)) of the Atlantic blue marlin (Makaira nigricans) 1264 
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population, estimated by the spatio-temporal modeling platform VAST from the data 1265 

collected within the National Marine Fisheries Service Pelagic Observer Program over the 1266 

period 1992-2017. For all panels, the shaded areas represent 95% confidence intervals.1267 
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Tables  1268 

Table 1. Overview of the nine catch-per-unit-effort (CPUE) standardization methods used in 1269 

this study.  1270 

Method  Overview 

GLM Method using generalized linear models (GLMs) that integrate fixed year and area effects.  

GLMint Method using GLMs that integrate fixed year and area effects and a fixed year-area interaction 

term.  

GLMMint Method using generalized linear mixed models (GLMMs) that integrate fixed year and area 

effects and a random year-area interaction term.  

GLMwt Method that (1) uses GLMs integrating fixed year and area effects; and (2) takes into account the 

surface area of the areas making up the study region to weight CPUE observations. 

GLMwt.int Method that (1) uses GLMs integrating fixed year and area effects and a fixed year-area 

interaction term; and (2) takes into account the surface area of the areas making up the study 

region to weight CPUE observations. 

GLMprwt Method that (1) uses GLMs integrating fixed year and area effects; (2) takes into account the 

surface area of the areas making up the study region to weight CPUE observations; and (3) 

assigns prior weights to raw CPUE data based on the year-area stratum to which the raw CPUE 

data belong.  

GLMprwt.int Method that (1) uses GLMs integrating fixed year and area effects and a fixed year-area 

interaction term; (2) takes into account the surface area of the areas making up the study region 

to weight CPUE observations; and (3) assigns prior weights to raw CPUE data based on the 

year-area stratum to which the raw CPUE data belong. 

GAM Method using generalized additive models (GAMs) that integrate an interaction term between 

eastings and northings accounting for spatial autocorrelation at a broad spatial scale.  

VAST Method using spatio-temporal models that account for both spatial and spatio-temporal 

autocorrelations at a fine spatial scale.  
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Table 2. Factors considered in the analyses conducted with data from the longline catch-per-1271 

unit-effort (CPUE) data simulator LLSIM.  1272 

Factor  Levels Level with the largest 

sample size in the full 

dataset 

Level with the largest 

sample size in the 

dataset containing 

non-zero CPUE data  

Year  1987-2015 1989 2013 

Season  Winter (January-March), spring 

(April-June), summer (July-

September), fall (October-

December) 

Summer Winter 

National Marine 

Fisheries Service 

(NMFS) area 

Gulf of Mexico (GOM), Mid 

Atlantic Bight (MAB), South 

Atlantic Bight (SAB), Florida East 

Coast (FEC), Caribbean (CAR), 

Northeast Coastal (NEC), Sargasso 

(SAR), Northeast Distant (NED), 

North Central Atlantic (NCA), 

Offshore South (OFS) 

NEC FEC 

Type of hook 

used (“hook”) 

Circle hook, J and circle hooks, 

unknown 

Unknown Unknown  

Type of bait used 

(“bait”) 

Artificial, dead, live, unknown Dead Dead  

Number of light 

sticks used 

(“light”) 

0, 1-500, 501-1500, unknown 3 3 

Number of hooks 

between floats 

(“hbf”) 

2, 3, 4, 5, 6 4 4 
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Table 3. “Walters’ table” (Campbell, 2015) constructed from the raw data from the longline catch-per-unit-effort (CPUE) data simulator LLSIM, 1273 

showing the number of data points in each year-area stratum. Here, the ALL scenario is considered; see the main text for details on scenarios.  1274 

Year\NMFS area Caribbean 

(CAR) 

Florida East 

Coast (FEC) 

Gulf of 

Mexico 

(GOM) 

Mid Atlantic 

Bight (MAB) 

North Central 

Atlantic 

(NCA) 

Northeast 

Coastal 

(NEC) 

Northeast 

Distant 

(NED) 

Offshore 

South (OFS) 

South 

Atlantic 

Bight (SAB) 

Sargasso 

(SAR) 

1987 568            2619 3208 9 2169 436 942   43 258 252 

1988 700               3247 2720 37 478 2339 1510 204 760 275 

1989 556  3795   2286    33 493 3454    1822   131 883 331 

1990 610  3003 1780    29   534 3921     1210    273 1350   246 

1991 552                2777 2055 23 408 4172 1198 78 1078 261 

1992 431        2718 2113   17 448 3792 1251 151   1051 313 

1993 644             2439 1677 67 459 3767 1167 65   1361 392 

1994 715      2310 1595    72 945 3908   984   81   1619 578 

1995 507       2340 2070   83 1426 4478   916   280 1341 280 

1996 589    2510 2422   105   891 3125   766   645   2261 468 

1997 527             2764 2534   57 379 3228 793 678 1689 265 

1998 416       2231 2426    21 337 2911 634   342   1241 305 

1999 188         2407 2953 16   170 2456   447   258 1240 139 

2000 323       2640 2837   16   105 2258   639 77   969 173 

2001 242                 1501 3281 38 185 2711 351 75 949 215 

2002 205            1710 2920   17 100 1992 524 102 683 288 

2003 152               1513 3358 26 181 1508 583 34 710 235 

2004 307              1633 3202 31 79 1667 466 30    715 207 

2005 156      1370 2397 12   127 1701   483    35 630 153 

2006 66        1292 1977 26 166 2098   427 158    579   157 

2007 27          1704 1870 30 72 2245   348 229   978 180 

2008 85            2140 1529 35 76 2505 345   172 943 357 

2009 33        1842 2442 20 6 2079   330 202    900   549 

2010 52          1980   622   21   41 2507   323   223 966 462 

2011 12          1887 866   33   50 2542   296 164   995 745 

2012 7            2265 1907   71 37 3061 444   206    1016 756 

2013 17            2290 1427 64 35 3086 408   215 1008   992 

2014 11           2121 1583 67 71 2788   385   158 978 1012 

2015 20          1171 1042 40 58 2530 302   145 777 1100 

 1275 
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Table 4. Factors considered in the analyses conducted with data collected within the National 1276 

Marine Fisheries Service (NMFS) Pelagic Observer Program.   1277 

Factor  Levels Level with the largest 

sample size in the full 

dataset 

Level with the largest 

sample size in the 

dataset containing non-

zero CPUE data  

Year  1992-2017 2013 2009 

Season  Winter (January-March), 

spring (April-June), summer 

(July-September), fall 

(October-December) 

Spring Spring 

NMFS area Gulf of Mexico (GOM), Mid 

Atlantic Bight (MAB), 

South Atlantic Bight (SAB), 

Florida East Coast (FEC), 

Caribbean (CAR), Northeast 

Coastal (NEC), Sargasso 

(SAR), Northeast Distant 

(NED), North Central 

Atlantic (NCA), Offshore 

South (OFS) 

GOM  GOM 

Type of hook 

used (“hook”) 

Circle hook, J hook, 

unknown 

Circle hook Circle hook 

Number of light 

sticks used 

(“light”) 

0, 1-500, 501-1500, 

unknown 

3 3 

Number of hooks 

between floats 

(“hbf”) 

(0-4.02], (4.02-4.15], (4.15-

5.19], (5.19-318] 

2 2 
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Table 5. “Walters’ table” (Campbell, 2015) constructed from the raw data collected within the National Marine Fisheries Service (NMFS) 

Pelagic Observer Program, showing the number of data points in each year-area stratum.  

Year\NMFS 

area 
Caribbean 

(CAR) 
Florida 

East Coast 

(FEC) 

Gulf of 

Mexico 

(GOM) 

Mid 

Atlantic 

Bight 

(MAB) 

North 

Central 

Atlantic 

(NCA) 

Northeast 

Coastal 

(NEC) 

Northeast 

Distant 

(NED) 

Offshore 

South 

(OFS) 

South 

Atlantic 

Bight (SAB) 

Sargasso 

(SAR) 

1992 11   10   35   65    0   33   70    0   29    0 

1993 41   18  203  181   52   68   75    0   65    0 

1994 35   19  113  151   19   77   61    0   40    0 

1995 47   14  193  136   83   51   65    0   29  0 

1996 6    7  115   12   41   11    0   27   61    9 

1997 9   13  150   36   19   64   42   25   29    1 

1998 10   31   73   53    8   23    0    4   49    0 

1999 17   22  160   38    2   23   40    8   31    3 

2000 0   29  167   61   14   48   47    0   43    0 

2001 10   13  198   64   15   21    1    0   61    0 

2002 21   63  158   58   12   16    0    0   19    1 

2003 4   55  269   69   46   36    0    0   51   17 

2004 39   51  264   88    3   23   76    0   61   32 

2005 10   30  303   92   16    3   14    0   64   22 

2006 0   31  273   89    0   49   48   10   54   17 

2007 19   64  615  110    0   13   44   13   50   10 

2008 0   87  828  117    0   83   28   21   38    0 

2009 0  113  862  143    0   63   39    7  117   29 

2010 16   98  375  142    0   66   34   10   96   42 

2011 0  129  341  111    0   95   32   17  119   42 

2012 0  153  451  128    0   76    0   19   81   40 

2013 6  144  828  201    3   94   29   13  106   48 

2014 0  142  565  176    0   60   22   29  195   45 

2015 14  128  415  234    0   68   45   30  153   43 

2016 10   95  528  249    0   65   36   41  181    7 

2017 7   70  295  263    1   28   25   11  174   15 

 


























